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Ahsiract. In the framework of the variational approach  to^ the co1lective:variable formalism 
the radiation field generated by the multidimensional domain walls is found and the dissipa- 
tion of these walls is considered. Also, the drift velocity of the domain wall in an external 
field is calculated. 

1. Introduction 

The aim of this article is to determine basic low-energy properties of quasiplane domain 
walls using the variational approach to the method of collective variables. This concerns 
first of all the determination of radiation generated by the developing domain wall and 
the wall damping connected with this radiation as well as the determination of low- 
temperature kinetic properties of the wall in a multidimensional situation. 

The problem of a microscopic description of nonlinear systems in terms of collective 
variables is reduced to two important issues. The first consists of the necessity of 
adequate separation of initial dynamic variables into ones that are coherent with respect 
to collective variables and incoherent (radiation) components, and the second is con- 
nected with the determination of a natural functional link between initial dynamic 
variables of the system and collective variables. These questions may be answered in 
the framework of the variational approach to the method of~collective variables [l]. 

For the Klein-Gordon nonlinear system with the Hamiltonian 

H= f d3x ( l12(x)+(V@(x))2+2C/(@(x)) )  (1) s 
the link between the initial variables @(x). n(x) and the collective variables X,, P, is 
determined by formulae 

and based on using the constraints 

( ( G Q C / G X d Q  -@J> =o 
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where 

G. = ( n6@/6Xa) Q.p=((S@/SX,)(S@JSX,)> <A )=Sd*A(x). 

YA/(x, X) are the basis vectors in the subspace orthogonal to the projection operator 
p, the core of which has the form 

The rest of the field degrees of freedom are described by the coefficients aA, bA, which, 
like variables X, , Pa, are canonically conjugated, {aA, bx ] = 6 ~ . ,  { X ,  , P p  } = 6 = ~ .  The 
quasi-static ansatz QC(x, X )  appearing in these formulae is determined from the varia- 
tional principle and satisfies the equation 

(1 - p)6H/6Qc(x) =O. 

This equation transforms into the equation for stationary states 6H/6O(x) = 0 if the 
collective coordinates X, are the degeneration parameters of vacuum solutions. The 
results adduced are the generalization of the canonical transformation [2] for the case 
of arbitrary collective variables. 

The transition to new variables itself does not provide for sufficiency of the method 
because the collective flux is determined not only by the variables X,, P, but also by 
the coherent components 4 ( X ,  P), &(A', P) of the coefficients an, bn. These coherent 
components are also determined from the variational principle, and the corresponding 
equations have the form 

(1 - @)(6H/6Q(X) + PM - l6rI(x) /6X)(@ = 6, n = 77) = 0 (4) 

?+)=(I - p)fi(x) fi(x) = PM-'(6@(x)/sX)(a =6) (5) 

where M,p = (( S@/SX,)(S@/SXp))(@ = 5). 
The Hamiltonian of the system in new variables is written in the form 

H=Ho(X, P) + H2(X, P; &, I s )  + V(X, P; &) 

where 

Ho(X, P) =H(uJ = 6, n= fi) = ( ; )PM-'P+ H(6,O) 

is the Hamiltonian of collective variables. 

H*(X, P; 5, E) = (4)((6L(@<)$J} + ( E 2 )  -2PM'O'-'(7766/6X)) + O(P2) 

L(@J =-A + U"(@.) 
is the part of the Hamiltonian that is bilinear in the incoherent components &=@-$I, 
rS = IC - f written in the linear approximation over collective momenta. The expression 
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for V(X, P; 5) has the form 

It should be stressed that fluctuations 6, Iz: are not canonical variables, but for small 
Pa their Poisson brackets are~close to Poisson brackets for canonical variables, 

@qX), xqXoj -0p) 
{&(x), Iz:(x')} =(1- p)(x, x') fO(P4). 

{ ~ z : ( ~ ) ,  ~z:(~'))  - o ( p s )  

2. The dynamic ansatz &(x; X, P) and the membrane Hamiltonian 

The formulae of the preceding section are of general form and they are not connected 
with the particular choice of collective variables. If a particular problem is dealt with, 
the choice of collective variables is defined by physical considerations. Obviously, the 
multidimensional domain wall may be regarded as the spatial membrane, for which 
&(U) will play the role of collective coordinates if the internal structure of the wall is 
not taken into account. If, for example, the double-degenerated ground state is realized 
at @(x)=&Q0, then this membrane may be identified with the surface at which the 
field @(x) changes its sign. Evidently the description of domain walls with the help of 
a surface assumes that the characteristic curvature radii of this surface exceed the 
domain wall thickness considerably. Under these conditions one may reproduce the 
obvious solution of equation (4) in the form of the following dynamic ansatz: 

Here U&) is the one-dimensional soliton of the nonlinear Klein-Gordon equation, 
mo=Sdzu:2(z) is its mass, h(~)=JP~(cr)+&g(u),  z ( x ) = [ x - X ( ~ ( x ) ) ] n ( u ( x ) ) ,  U' 
are the coordinates on the surface, ~ ' ( x )  is the point on the surface nearest to x, 45) 
is the normal to the surface at the point ~ , g = d e t  gjk, gjk=X.iX,k is the metric tensor 
on the surface, Pa(o) is the membrane momentum at the point U canonically conjugated 
to the collective coordinate X,(U), Xi=aX/ad. 

Let us now define the Hamiltonian of the collective variables corresponding to 
solution (7) for the dynamical ansatz *(x;X, P). Using the substitution for variables 
mentioned above we find 

S@dx)/SX,(cr) = -A(G(x), o)n.(~(x))u:(z(x)) 

where A(u, U') is the &function on the surface. Taking into account that in the topical 
area near the surface of membrane the volume element has the form dxx& dz d25, 
we obtain for the matrix MnP(u, U') (5) 

Kp(a ,  0') =m(@n.(U)np(dmA(U. c') 

where 
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Due to the invariance of the theory under the arbitrary changes of the parameters 
a + q(d) defining the coordinates on the membrane surface, the following constraints 
take place [3] : 

P(U)X.j(U) = 0. 

Namely, the momentum P(a) is orthogonal to the surface X(a) at the point a and 
hence directed along the vector n(a). Therefore, substituting the expression for 
MUp(a, a‘) and formula (7) into (6) and using the identity U(U, )=(~) (U: ) ’  we obtain, 
after integrating over z, the Hamiltonian 

Ho(X, P)= dzO (~(u)+~P(o)X.,(U)) s 
describing the relativistic membrane in the non-covariant approach. In accordance 
with the Dirac approach [4], we added to this expression the term connected with the 
availability of the reparametrization constraints. 

In the absence of folds, which is valid for small oscillations of the membrane, one 
can introduce the natural gauge condition for the components XI(a) orthogonal to 
the total momentum of the system Plo,=jd2a P(o), putting XLj(a)=ai. In this case 
g,=G,+X3.iX,Jand d e t g g l  +X:.,. Due to the coupling conditions PX,i=O, the trans- 
verse momenta PI,(o) = -P3(u)Xj j (a )  will be the second-order quantities in gradients 
and momenta of the longitudinal displacements X3(a). In the leading approximation 
over this parameters, the Hamiltonian (8) will have the form 

Ho=(t) d20 (moX:,,(~) +~;’P:(u)). (9) s 
This is the Hamiltonian of small oscillations of a membrane. In terms of the amplitudes 
of these oscillations a, a* determined by expansions 

x3(a) =X,+ (2m&s)-”2(ak+a?k) exp(-iku) 

P3(o)=(Rt,,/S) -i 2 (N?ok/2s)”2(a*-af*) exp(-iku) 
(10) k#O 

k#O 

the Hamiltonian Ho has the form 

Ho= (P?0t/2mOs) + k a h  = ( P : , & b S )  + knk 
k+O YZO 

where S = j d 2 a  is the area of the domain wall, X,=J dzaXJ(a) is the coordinate of 
the plane associated with the domain wall, and nk, a k  are the action-angle variables 
defined by formulae ak=& exp(-iak), a2 =&exp(-iSx). 

3. Radiation of spatial modes 

The oscillations of the domain walls generate fluctuations of the field variables 8, f 
and, consequently, lead to emission of spatial modes. For a small curvature of the 
membrane, the fluctuations 8, f will also be small. Under this condition we find the 
equations for radiation components, calculating the coefficients of the zero and first 
powers of the field fluctuations 6, S in the leading approximation over gradients and 
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momenta of displacements. The zeroth over the fluctuations terms in the equations of 
motion occurs when calculating the Poisson brackets {&, H o } ,  {e, Ho] with the subse- 
quent substitution a + E, b + 6, and represents the external forces generating these 
fluctuations. Directly from formulae (9, (7) and (9) it may be proved that the contribu- 
tion of the Poisson brackets { E ,  H o }  to the equations of motions is small compared 
with the contribution of the bracket 

(1 1) (&(x), Ho)(a=E, b=E) = -(1/m~)z(~)~(z(x))P~(O(X))A~~~~(x)) =n,(x), 

What determines the terms uniform in fluctuations, in the leading approximation, is 
the fragment of the Hamiltonian H 2 :  - 

{&(x), H2}rff(x) {if(x). H2} = -L@(.r). (12) 

3(x) + Lo&) = &(x) L~ = -A +a2. (13) 

The difference of the potential U"(aC) in the operator L from C22=U"(@o) is not 
significant in this problem. Therefore, from equations (11) and (12) one finds 

Using the expression for the retarding Green function 

G& = W) sin@&)/& 

one may write the solution of equation (13) in the form 

dt' G,,(t - t')f(x, t )  

where A =  -i X kala9.k is the Liouville operator of surface modes. It is convenient to 
calculate the integral determining the Fourier component nul in the variables U, I that 
are related to the coordinates x by the equation x=o+G(u)+n(a)z.  Then using the 
long-wavelength approximation qz3(cr)  c< 1 as well as weak displacement gradients one 
finds that 

nCq= d'x n.(x) exp(-iqx) d2a exp(-iqu)q3P3(a)AmX3(o) (15) s 
- 

-I  +* where 2=(2@,) 

and q in the asymptotic region x3 + fco, we find 

I-, dzU:(z)z* is the factor determining the domain wall thickness. 
Substituting equations (10) and (15) into (14) and calculating the integral over a 

- 
Q0Z2 

, @(x, f)=F- m(k+k')'exp{-i[(k+k')x, 
4mOS k,K 

+ (k+k')t T p ( k ,  k')x3]}B(p2)a*aw+c.c. 

p(k, k')=J2(kk'-kk')-Q2. 

This expression determines the radiation field in the form of waves diverging from the 
wall. The condition p2(k, k') > 0 defines the region in the wave vector space of surface 
excitations, the binary collisions of which lead to this radiation. 
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4. Relaxation of the quasiplane domain wall 

The emission of spatial modes results in the damping of the domain wall oscillations. 
This damping is described by the equations for the action variables nk .  In the leading 
approximation over gradients and 6, one has 

i k = - a H / % k Z  d2u ( a P , ( u ) / a 3 k ) ( ( s ~ , / s P ~ ( ~ ) ) ~ ~ ) .  s 
Using the solution for 5 (equations (14) and (11)) and noting that 

6&(x)/6P3(u) ~m~'z (x )P3(u(x ) )u : ( z (x ) )A(u ,  u(x)) 

where A(u, U') is the &function on the surface, one finds 

It is well known that rapid randomization of the phases occurs in the system of 
interacting oscillators. Therefore, one may simplify further analysis if one substitutes 
expansions (4) into equation (16) and then average the right-hand side of this equation 
over the surface mode phases 3k .  At S --t a such averaging reduces to the establishment 
of binary couplings [ a l a f ]  =61,2nl. Then, making the sequential integration over U, U', 

qL, q3 and over z, z', one obtains 

This nonlinear integral equation determines the dissipation of surface modes due to 
their binary inelastic collisions. There are a few exact singular solutions of this equation. 
Some of them have the form 

n k ( i )  =N[2nk0( 1 + NJ(ko,4)t)]-'6(k- ko) 

nk(z) = N[1 -exp(-J(kl, k2)Nz)]-'[&(k -kl) +exp(-J(kl, k2)Nz)6(k -k2)] .  

@ I ,  k2) = (2n)-' JoZx dq J(kl, k2) 

5. Low-temperature drift of the multidimensional domain wall 

The non-equilibrium properties of solitons in one-dimensional theories have been inves- 
tigated in many papers [5 ,6 ] .  The variational approach to the collective-variable formal- 
ism permits one to analyse a multidimensional situation. As an example, consider the 
evolution of the system under the action of the external perturbation removing the 
degeneration of the ground state. In this case one of the phases becomes unstable and 
its volume begins to shrink. This process may be presented locally as the induced motion 
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of the quasiplane domain boundary in the direction of the unstable phase. According 
to the linear response theory the average velocity of this motion is determined by the 
expression 

_r 

X=T- '  som dt ( ( { H ,  V},tc(i),> (17) 

where& is the domain wall coordinate (IO), V=Jd3 xv(@(x)), v ( @ ) = - v ( - @ )  is the 
external perturbation. and angular brackets (( )> denote averaging over the equilibrium 
Gibb's ensemble corresponding to the Hamiltonian (9). 

Obviously, the main low-temperature contribution is determined by terms contain- 
ing the minimal power of dynamic variables. Guided by this consideration in analysing 
the expression 

{ff, V}=-<nv'(@))=-<(n+~QM-'S~DJSX)v'(@)) 

S W x ) l S X d o )  = -A(o(x), o)n,(o(x))u:(dx)) (18) 

and noting that 

we find that only one term in equation (1 7) is singular at t -t m and is proportional to 
the correlator ((,f&(t)>. Thus, calculating the spatial integral one gets 

8= ~ V ( @ ~ ) S T - ' D .  (19) 

where D = F  dt((,fcyc(tj> is the diffusion coefficient. 

the following presentation : 
In the memory function formalism [7] one may obtain for the diffusion coefficient 

D = ((y:>>2k-'(0) d t  (jcexp(iQAQt)fc> (20) 

where Q= 1 -A!c>>((~f>,-'((~c is the projection operator. In the leading low-tempera- 
ture approximation the operator Q should be substituted by unity and for A one 
should take the Liouville operator corresponding to the Hamiltonian of non-interacting 
elementary excitations 

Ho= P?ot/2moS+C ka$a,+ (:)($L(&)6+d2). 

The first two terms describe the motion of the domain wall as a whole and the excitations 
of its surface modes, the third one defines the fluctuations of the spatial (incoherent) 
mode on the background of the plane domain wall. 

The simple analysis accounting for the energy &function presence in equation (20) 
shows that the fragment of the acceleration determined by the expression 

((6%) ( V ( U C ) V ) )  xc= {(aH/aP,,,), H }  =- 
1 

3! moS 

makes the main contribution to equation (20). 
Using perturbation to calculate the thermodynamic average one should pay atten- 

tion to the peculiarities inherent in the multidimensional problem. Remember that due 
to expansions (2) the incoherent components 6, d belong to the eigensubspace of the 
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projection operator 1 - @. According to equations (3) and (15) in the limiting case of 
the resting plane of the domain wall, the core of the operator p assumes the form 

P ( X ,  x') =mo'rr:(z(x))u:(zf~))A(~(x), ~ ( x ' ) )  @ 3 ( z ( X ) ,  ~ ~ ' ) ) A ( O ( X ) ,  43')). 

This shows that not only the zeroth translational mode of the operator L(uJ is excluded 
from the spectrum of fluctuations 6 ( x )  but also the whole bunch of modes associated 
with this mode and transverse to the normal. If one bears in mind that in contrast to 
the one-dimensional model the spectrum of the operator L(u.) possesses no gap, this 
means that the condition ~ J & ( x ) = D  restores this gap in the spectrum of incoherent 
components. This is important for constructing low-temperature expansions. It prevents 
the appearance of principal-value integrals with dangerous denominators in the pertur- 
bation theory. Naturally, the degrees of freedom excluded from field variables due to 
the condition @ 6 ( x )  = 0 manifest themselves as collective variables describing the 
domain wall. 

Thus, expanding the fluctuations &, rt over eigenfunctions e-'"qA ( 2 )  of the operator 
L(u.) and substituting equation (21) into equation (20) one gets, after averaging over 
the Gibbs distribution, 

x ( l G . ~ . d + 2  Re Gm.&m.d 

[6(WA,k, -OL*-WAjkt) +26(uA,k, +w2>kz-~A~k>)] (22) 
where 

G A , ~ ~ . ~ , = < ~ A , ~ ~ * U ( U ~ ) ( ~  - @ 3 ) ~ i , )  

c&=k2+w2, and wi#O is the spectrum of the one-dimensional operator L(uc) (note 
that the diffusion coefficient D- S-l and the drift velocity (19) remains finite at S --t 00). 

The low-temperature behaviour of the diffusion coefficient D- T-l coincides with the 
low-temperature dependence for the one-dimensional model established in [6], and 
equation (22) modifies the expression for the diffusion coefficient of the onedimensional 
model [8] by accounting for transverse phonons. Conceming the results obtained in 
this section, one needs to bear in mind that the expression for D (equation (22)) is 
valid at T<<R. It is a condition for the application of the low-temperature expansions. 
As for the drift velocity, which according to equations (19) and (22) is proportional to 
T-', it must be weak compared with the heat velocity of spatial phonons v T - m .  
Obviously, if the external field v(Qo) is sufficiently weak, then a temperature interval 
exists where these conditions do not contradict each other. 

6. Summary 

This paper determines the properties of the quasiplane multidimensional domain walls 
of the nonlinear Klein-Gordon equation. The studies have been performed on the 
grounds of the variational approach to the collective-variable formalism. In the frame- 
work of this approach the fragments of the initial variables have been determined 
that are incoherent with respect to collective variables. In the asymptotic region these 
fragments constitute the radiation field generated by the subsystem of collective vari- 
ables. Calculations of this radiation are easy and are not connected with specificity 
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of the model considered. The paper stresses the important role of the constraints 
((6@c/6X,)(Q-@,))=0 in forming the spectrum of the incoherent component, 
this constraints being the basis of expansion (2). 

References 

[ I ]  Tsukanov V D 1992 J. Phys. A: Math. Gen. 25 6099 
[2] Tomboulis E 1975 Phys. Reu. D 12 1678 
131 Collins P A and Tucker R W 1976 Nucl. PIzys. B 112 150 
[4] Dirac P A M 1964 Lectures on Quormnz Meclmrics (New York: Yeshiva University) 
[5] Wada Y and Schriefkr 1 R 1978 Phys, Rev. B 18 3897 
' Collins M A,  Blumen A, Currie J F and Ross J 1979 P1i.v~. Rev. B 19 3630 

Sahni P Sand Mazenko G F 1979 Phys. Rcu. B 20 4674 
Marchesoni F 1987 Phys. Reu..A 36 4559 

[6] Kunz C 1987 Pliys. Rev. A 34 510 
[7] Mori H 1965 Prog. Theor. Pliys. (Kyoto) 34 423 
[SI Tsukanov V D 1990 Teor. Mot. Fiz. 84 366 


